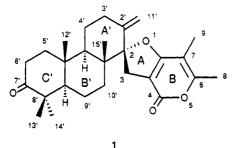
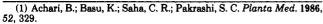
X-ray Crystal Structure of Lygodinolide: A Novel Spiro Furopyran-Perhydrophenanthrene Derivative from Lygodium flexuosum

Basudeb Achari, Chandana Chaudhuri, Chitta R. Saha, and Satyesh C. Pakrashi*


> Indian Institute of Chemical Biology, Calcutta 700 032, India

Donald R. McPhail and Andrew T. McPhail*


Department of Chemistry, P. M. Gross Chemical Laboratory, Duke University, Durham, North Carolina 27706

Received February 9, 1990

In a previous paper,¹ we reported the structure elucidation of O-p-coumaryl dryocrassol, a new compound isolated along with the known compounds tectoquinone, kaempferol, kaempferol-3- β -D-glucoside, β -sitosterol, stigmasterol, and dryocrassol itself from Lygodium flexuosum (Polypodiaceae), a fern widely distributed in India and known to possess potent antifertility activity.² Further investigation on the methanolic extract of this plant afforded, in 0.002% yield, yet another new compound, lygodinolide (1), the characterization of which is described herein.

Lygodinolide (C₂₇H₃₆O₄; $M^+ m/z$ 424; mp 278 °C; $[\alpha]^{28}$ _D $+42.0^{\circ}$ (c 0.1, CHCl₃)) was crystallized from CHCl₃-petroleum ether. Its IR spectrum showed two peaks in the carbonyl region at 1710 and 1695 cm⁻¹, the former being more intense than the latter; another sharp peak at 890 cm^{-1} was assignable to a >C=-CH₂ group, the presence of which was supported by the ¹H NMR spectrum (2 H, s, at δ 5.0), which also contained singlets for four methyl groups. Two other methyl group signals were somewhat downfield, but the existence of either an acetoxy or a ketomethyl group in the molecule could be discounted since 1 was unaffected by mild alkaline hydrolysis and $NaBH_4$ only reduced a ring ketone to a secondary alcoholic function (1 H, dd, J = 11, 5 Hz at δ 3.24). The ¹H NMR spectrum of 1 additionally displayed a two-hydrogen AB doublet of doublets (J = 16 Hz) at δ 3.05, compatible with a methylene group flanked by fully substituted carbon atoms. In the mass spectrum, a prominent fragment ion peak at m/z 205 was reminiscent of the A/B ring fragment of a 3-keto triterpenoid. The presence of such a moiety was indeed substantiated by the virtually identical ¹³C NMR signals observed (compared to methyl oleanonate) for the corresponding carbon atoms of 1 except for C_8 and C_9 ($C_{10a'}$ and $C_{4a'}$, respectively, in 1) which were shifted by about 4 δ units, reflecting the different nature of the C ring (A' in 1). The spectrum, which displayed separate peaks for all 27 carbon atoms, contained two low-field signals at

⁽²⁾ Gaitonde, B. B.; Mahajan, R. T. Indian J. Med. Res. 1980, 72, 597.

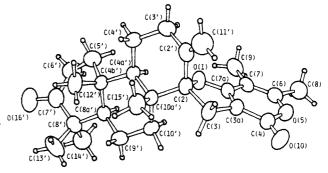
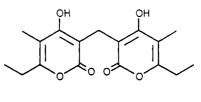



Figure 1. ORTEP diagram showing the structure and solid-state conformation of lygodinolide (1). Small circles represent hydrogen atoms.

 δ 110.6 and 144.7 consistent with an *exo*-methylene group. Other peaks in the downfield region (singlets at δ 98.8, 100.7, 103.0, 160.1, 161.8, and 169.4) pointed to an appropriately substituted aromatic or conjugated chromophore.

Single-crystal X-ray analysis established unequivocally the complete structure and relative stereochemistry of 1.³ A view of the structure is presented in Figure 1. Bond lengths and angles are in accord with expected values.⁴ Ring A has an envelope conformation, ring B is fairly planar, and cyclohexane rings A' and B' are in chair forms, while ring C' approximates to a twist-boat conformation.

Spectral data for 1 are consistent with the derived structure. The UV spectrum resembles that of helipyrone (2).⁵ In the IR spectrum, the 1710-cm⁻¹ absorption arises

2

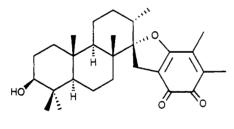
only partly from the keto carbonyl stretching frequency as evidenced by the fact that the NaBH₄ reduction product of 1 showed two carbonyl peaks of comparable intensity at 1710 and 1695 cm⁻¹. Literature survey⁶ reveals that most unsaturated lactones show a split $\nu_{C=0}$ in this region, believed to arise due to Fermi resonance with an overtone. Two other absorption bands at 1635 and 1565 cm⁻¹ are in agreement with $\nu_{\rm ring}$ values reported for 4-oxygenated α -pyrones. Of the ¹³C NMR signals, those for C_{4a}-C_{10a} along with substituents could, as above for the mass spectral data, be assigned by comparison with like 3-oxo triterpenoids. Further, those for $C_{2'}-C_{4'}$ were derived from chemical shifts⁷ of the B-ring carbon atoms of some labdane diterpenes, while most of the assignments for the pyrone moiety could be made on the basis of confirmed values⁵ for 2. The chemical shifts attributed to the methyl groups at C_6 and C_3 rely, on the other hand, on the observed higher J_{res} values in the SFORD spectrum. In

4977

0022-3263/90/1955-4977\$02.50/0 © 1990 American Chemical Society

⁽³⁾ Supplementary material. See the paragraph at the end of the paper

⁽⁴⁾ Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A.
G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2, 1987, S2.
(5) Ali, E.; Bagchi, D.; Pakrashi, S. C. Phytochemistry 1982, 21, 243.
(6) Katritzky, A. R.; Ambler, A. P. In Physical Methods in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Academic Press: New York, 1963;


Vol. II, p 165.

⁽⁷⁾ Chang, C. W. J.; Flament, I.; Matson, J. A.; Nishida, T.; Ohloff, G.; Wehrli, F. W.; Weinheimer, A. J. In Progress in the Chemistry of Natural Products; Herz, W., Grisebach, H., Kirby, G. W., Eds.; Springer-Verlag: New York, 1979; Vol. 36, p 1.

absence of a suitable model, however, the singlet at δ 98.8 has been assigned to the spiro carbon center by elimination, although the chemical shift is somewhat high for an sp³-carbon carrying one oxygen atom (the downfield shift possibly stems from the β -substitution pattern coupled with the conjugation of the oxygen atom with the enone moiety). Nevertheless, some of the close-lying resonances could be exchangeable.

Peaks at m/z 205 and 219 in the mass spectrum of 1 conceivably arise from an initial breaking of the C2-C10a' bond followed by C_{3} - $C_{4'}$ or C_{4} - $C_{4a'}$ cleavage with hydrogen shift as appropriate and thus could originate from either part of the molecule. Another pair of peaks at m/z 271 and 153 plausibly arise from the two fragments derived via the rupture of O_1 - C_2 and C_2 - C_3 bonds with one hydrogen atom transfer. There is also a significant peak at m/z 326, genesis of which may be traced in the cleavage of ring C' with elimination of C_5 — C_8 , although this is not a very prominent occurrence in triterpenoid ketones.

The spiro furopyran-perhydrophenanthrene skeletal structure of 1 appears to represent a new class of natural product for which the biogenesis is not readily discernible. Biogenetically, 1 may be derived from diterpenoid and pyran parts. Since cheilanthane-type sesterterpenoids have been reported from Polypodiaceae, however, derivation of 1 from such a precursor (3) through biogenetic incorporation of a two-carbon unit (or two one-carbon units) with methyl 1.2-transfer may not be ruled out.

3

Experimental Section

The melting point was determined in an open capillary and is uncorrected. ^{1}H NMR and ^{13}C NMR spectra were recorded at 100 and 25 MHz, respectively, using CDCl₃ as solvent and TMS as internal standard. The mass spectrum was recorded at 70 eV with a direct inlet system.

Plant Material. Whole plant of L. flexuosum was collected by M/s United Chemicals and Allied Products, Calcutta, where a voucher specimen is maintained.

Extraction and Isolation. The air-dried whole plant (4 kg) was percolated with MeOH for 90 h at room temperature. Distillation of the methanolic percolate on a water bath was followed by extraction of the residue with ether $(3 \times 500 \text{ mL})$. The ether was then removed on a water bath, leaving 60 g of crude extract, which was column chromatographed over silica gel (60-120 mesh). The 25% chloroform in petroleum ether eluted fraction when rechromatographed over neutral alumina afforded, in 5% chloroform in petroleum ether eluants, lygodinolide (1): 82 mg, 0.002%; mp 278 °C (CHCl₃-petroleum ether); $[\alpha]^{28}_{D}$ +42.0° (c 0.10, CHCl₃); UV λ_{max} MeOH (log ϵ) 282 sh (3.27), 251 sh (3.43), 222 sh (3.86), 211 sh (3.95) nm; IR v_{max} (Nujol) 3600-3100, 2900,

1710, 1695, 1635, 1575, 1430, 1380, 1270, 1120, 1050 and 890 cm⁻¹; ¹H NMR δ 5.0 (s, 2 H, CH₂), 3.05 (2 d, 2 H, J = 16 Hz, C₃-CH₂), 2.64-2.36 (m, 12 H), 2.20 (s, 3 H, C₆-CH₃), 1.95 (s, 3 H, C₇-CH₃), 1.80-1.28 (m, 12 H); ¹³C NMR δ 216.8 (s, C₇), 169.4 (s, C₄), 161.8 (s, C_{7a}), 160.1 (s, C_6), 144.7 (s, $C_{2'}$), 110.6 (t, $C_{11'}$), 103.0 (s, C_7), 100.7 (s, C_{3a}), 98.8 (s, C_2), 54.6 (d, $C_{8a'}$), 50.7 (d, $C_{4a'}$), 47.0 (s, $C_{8'}$), 42.9 (s, C_{10a'}), 39.1 (t, C_{5'}), 36.9 (s, C_{4b'}), 33.7 (t, C_{6'}), 32.6 (t, C_{10'}), 32.4 (t, $C_{3'}$), 26.6 (t, C_{3}), 26.3 (q, $C_{14'}$), 22.1 (t, $C_{4'}$), 20.8 (q, $C_{13'}$), 19.1 (t, $C_{9'}$), 16.9 (q, C_{8}), 16.2 (q, $C_{15'}$), 15.9 (q, $C_{12'}$), 9.4 (q, C_{9}); MS, m/z 426, 409, 396, 381, 326, 311, 283, 271, 219, 205, 153.

Sodium Borohydride Reduction of 1. Compound 1 (5 mg) was added to excess NaBH₄ in CH₃OH. The reaction mixture was kept on a water bath for 3 h and then worked up in the usual way: IR v_{max} (Nujol) 3600-3100, 1710, 1690, 1565, 1435, 1375, 1265. 1110, 1025, 890 cm⁻¹; ¹H NMR δ 5.0 (s, 2 H, CH₂), 3.24 (dd, 1 H, J = 11, 5 Hz, C₇-H), 3.05 (2 d, 2 H, J = 16 Hz, C₃-CH₂), 2.64–2.36 (m, 12 H),2.20 (s, 3 H, C₆-CH₃), 1.95 (s, 3 H, C₇-CH₃), 1.80-1.28 (m, 12H)

X-ray Crystal Structure Analysis of Lygodinolide. Crystal data: $C_{27}H_{36}O_4$, M_r 424.59, orthorhombic, a = 11.146 (1) Å, b =20.524 (2) Å, c = 10.199 (1) Å (from 25 orientation reflections, $60^{\circ} < \theta < 71^{\circ}$), V = 2333.1 (7) Å³, Z = 4, $D_{calcd} = 1.209 \text{ g cm}^{-3}$, $\mu(\text{Cu K}\alpha) = 5.9 \text{ cm}^{-1}$ ($\lambda = 1.5418 \text{ Å}$); crystal dimensions 0.09 × 0.18×0.50 mm, space group $P2_12_12_1$ (D_2^4) uniquely derived from the systematic absences h00 when $h \neq 2n$, 0k0 when $k \neq 2n$, and 00l when $l \neq 2n$

Oscillation and Weissenberg photographs yielded preliminary unit cell parameters and space group information. One octant of intensity data was recorded on an Enraf-Nonius CAD-4 diffractometer [Cu K α radiation, graphite monochromator; $\omega - 2\theta$ scans, scan width $(1.00 + 0.14 \tan \theta)^{\circ}$]. From a total of 2712 nonequivalent measurements, those 2102 reflections with I > $3.0\sigma(I)$ were retained for the structure analysis, and the usual Lorentz and polarization corrections were applied.

The crystal structure was solved by direct methods. All nonhydrogen atoms were located in an E-map. Several rounds of full-matrix least-squares adjustment of atomic positional and thermal parameters (at first isotropic and then anisotropic) were followed by evaluation of a difference Fourier synthesis that yielded hydrogen atom positions. Inclusion of hydrogen atom positional and isotropic thermal parameters, as well as an extinction correction, as variables in the subsequent least-squares iterations led to convergence (maximum shift 0.01σ) at R = 0.036 $(R_{\rm w} = 0.50, \, \text{GOF} = 1.2).^8$

Neutral atom scattering factors used in the structure factor calculations were taken from ref 9. In the least-squares iterations, $\sum w\Delta^2 (w = 1/\sigma^2(|F_0|), \Delta = (|F_0| - |F_c|)$ was minimized. Crystallographic calculations were performed on PDP11/44 and MicroVAX computers by use of the Enraf-Nonius SDP suite of programs incorporating the direct-methods program MULTAN11/82.

Acknowledgment. C.C. is grateful to the CSIR, New Delhi, for a research fellowship.

Registry No. 1, 127793-92-4.

Supplementary Material Available: Tables of crystallographic data, fractional atomic coordinates, thermal parameters, bond lengths, bond angles, and torsion angles for 1 (12 pages). Ordering information is given on any current masthead page.

⁽⁸⁾ $R = \sum ||F_o| - |F_c|| / \sum |F_o|; R_w = [\sum w (|F_o| - |F_c|)^2 / \sum w |F_o|^2]^{1/2}$; GOF = $[\sum w \Delta^2 / (N_{observas} - N_{param})]^{1/2}$. (9) International Tables for X-ray Crystallography; Kynoch: Birmingham, England, 1974; Vol. IV.